

EXCELERATE'22

NO LIMITS

8

WEBINAR The PLM-MES Gap & Why Bridging it is Urgent Now

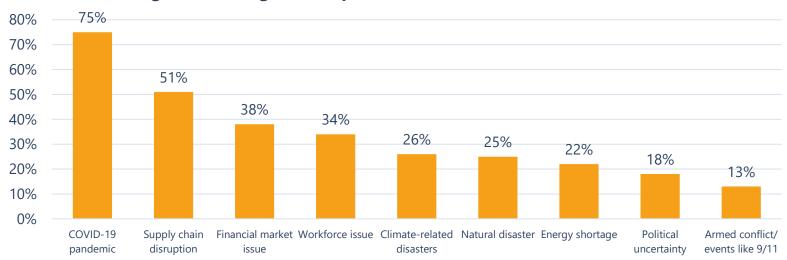
Attila Labas, Sr. Director Product Management, iBASEt Jonathan Scott, Chief Architect, Razorleaf Corporation

Speakers

Derek Neiding Vice President of Sales **Razorleaf Corporation**


Jonathan Scott Chief Architect Razorleaf Corporation

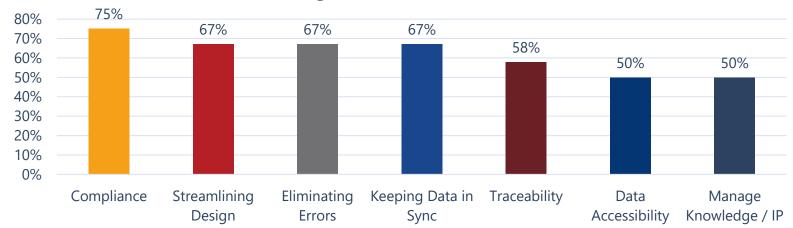
Attila Labas Sr. Director Product Management iBASEt


- Manufacturing Challenges
- View from the Smart Factory
- Evidence of the PLM-MES Gap
- Best Practices
- MES Requirements
- Closing the Gap
- Q&A

Manufacturing Companies Under Pressure

Significant Negative Impact on Business Over The Prior Year

Source: Executive Strategies for Long-Term Business Sustainability 2022



Everyone Wants Digital Continuity


Over Three-Quarters Believe Digital Thread is Important or Critical to achieving their business strategy

A&D Digital Thread Initiative Goals

Source: Choosing the Right PLM to Support the A&D Digital Thread, © Tech-Clarity Inc. 2021

Yet the Gap Exists

Manufacturing focus

- Efficient processes
- On-time shipment
- Consistent results

Manufacturing frustrations

- New products are difficult to make
- Tolerances are impossibly tight
- Quality is not consistent using specs

Design focus

- Product innovation
- Measured on speed
- Product cost, meeting specs

Design frustrations

- Wasting time in engineering
- Slow handoff to production
- Finished products don't meet design intent or specs

Initiatives' Success Rests on Connection

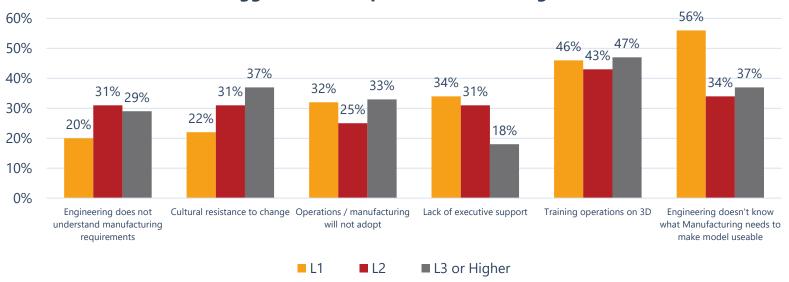
Enterprise System Integration Edge AI & Intelligence 30 Machine Learning 46 Continuous Intelligence Command & Control Ontology Eng-System Integration Advanced 11 Digital Twin (DT) 31 Artificial Intelligence Al 41 Real-time 47 Business Intelligence 25 Orchestration PT/IoT System Prescriptive Recommendations 42 Entity Relationship Visualization 12 DT Instance 20 Digital Twin 32 Federated Learning 26 Alerts & Notification 36 Business Rules 48 BPM & Workflow 13 Temporal Data Store Collab Platform Integration 27 Reporting Distributed Ledger & Smart Contracts Augmented Reality AR Gaming Engine Visualization 44 Virtual Reality VR 50 3D Rendering Data Storage & Archive Services Data Analysis & Analytics 60 Safety 51 Gamification Simulation Model Event Logging Data Encryption 61 Reliability 62 Resilience Al Model Data Aggregation

Digital Twin

Model-based Enterprise

Level name	Drawing-Centric	Drawing Model- Centric	Validated Model- Centric	Formalized Model- based Definition	Trusted Model- Based Definition	Integrated Model-Based Enterprise	Extended Model-Based Enterprise
Level Identifier	LO	L1	L2	L3	L4	L5	L6
Level Theme	2D drawings only; Disconnected	2D drawings derived from 3D models; Drawings Disconnected from models	2D drawings & derivatives derived from 3D models	3d Models with semantic PMI added; Producing 3D interactive viewable	Digital Model- based definition (MBD); certified and authorised	MBD dataset made useable for all lifecycle activities within enterprise	Enterprise extended with optimized capabilities and extended partners
Authorised Definition	2D drawings	2D drawings	2D drawings w/ support models	Drawings w/ support MBD	3D M8D w/ support drawing	3D MBD dataset	3D MBD Dataset
Artifact management	File sharing	Document- centric PDM	Document- centric PDM	Part-centric PDM	Part-centric lifecycle PDM	Enterprise part- centric PDM	Extended part- centric PDM

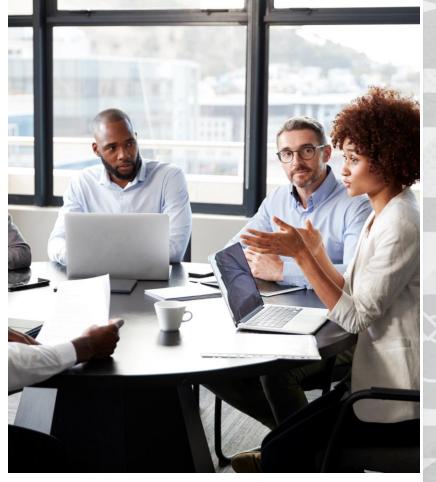
Digital Thread



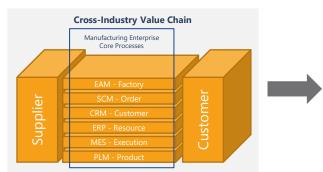
Gap Creates Issues for Initiatives

Biggest MBE People-related Challenges

Source: Adopting a Model-Based Enterprise Strategy? What you Should Know © Tech-Clarity Inc, 2022

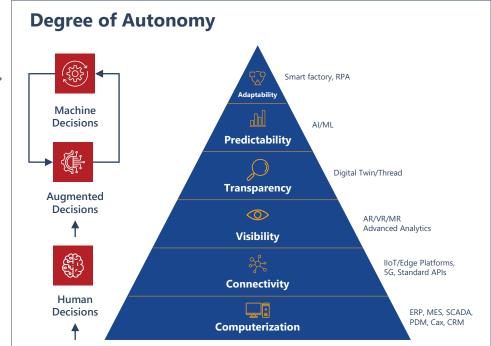


View of Smart Factory Attila Labas


- As an MES provider, how do you view this Issue?
- Why is it so fundamental to connect PLM and MES?
- And what is involved; is it difficult?

Implementation of Smart Factory

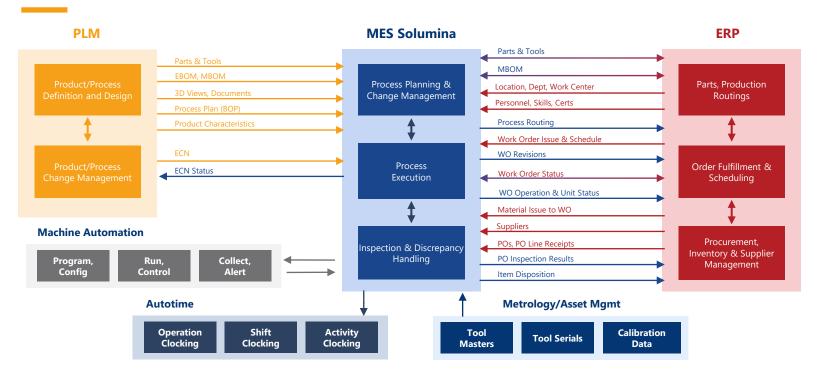
EAM: Enterprise Asset Management


SCM: Supply Chain Management

CRM: Customer Relationship Management

ERP: Enterprise Resource Planning

MES: Manufacturing Execution Systems


PLM: Product Lifecycle management

Typical Connections

Recap of Connectivity for Smart Factory

Connectivity is Basic

- PLM and MES are just two of the applications must connect
- Computerization and Connectivity are the base layers for
 - Advanced analytics
 - Digital thread and digital twin
 - Predictive analytics
 - Smart Factory

And Complex

- Many streams of data must flow
- Within the MES: Planning, Execution, Quality
- Between MES and ERP, equipment, timekeeping, and metrology, maintenance
- From the PLM to MES
- From the MES back to PLM

PLM – MES Gaps and Overlaps

Gaps

- No feedback from MES to PLM
- Improvements not able to synchronize
- Manual change requests
- Plant floor uses 2D drawings, not 3D models
- Detailed PMI missing from models

Overlaps

- MBOM
- Routings
- Process Plans
- Work Instructions
- ECOs and Change

Needs Context-rich Integration

PMI: Part of the Bridge Structure

PMI (Product and Manufacturing Information): The annotations in a 3D model that support various lifecycle activities such as material specifications, tolerances, and inspection requirements.

If you give me semantic PMI, wow, that's truly transformational. I can automate so many things, and I can eliminate a lot of the need for shop floor operators to access engineering and provide them with richer instructions. It's just mindboggling how fertile that is."

Jeff Gleeson

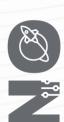
Senior Manager of Manufacturing Systems LOCKHEED MARTIN AERONAUTICS COMPANY

Evidence of the Gap

Example 1

Design shows four identical screws for an assembly, but without indication of which goes where or which to insert first

Solution: Next-level Detail in Model Used in MES

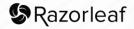

Complete GUID per component linked to detailed work instructions

Evidence of the Gap

Example 2

© 2022 iBASEt Corporation

© 2022 Tech-Clarity, Inc. | © 2022 Razorleaf


Corporation

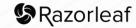
A design engineer lost productive time by needing to interpret / augment a 2D drawing for a planner or quality engineer

Solution: Complete Model with Semantic PMI

The engineering group uses annotated 3D models for downstream consumers to query directly

Evidence of the Gap

Example 3



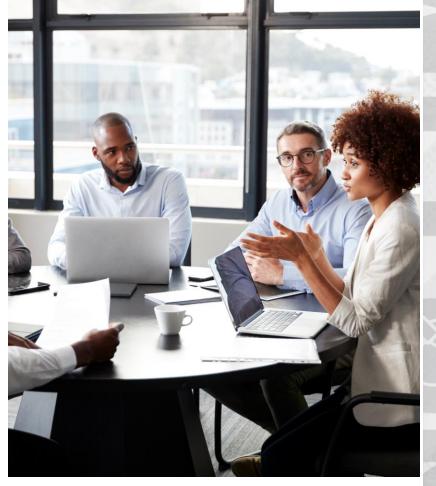
The engineering team wasted time finding ways to meet a tolerance requirement that the shop floor previously could not, but can now meet

Solution: Feedback Loop

Manufacturing capabilities are updated regularly in PLM

Recap of Best Practices to Bridge the Gap

- Connecting change processes in a closed loop
- BOM-Centric viewing connecting 3D to all BOMs
- All disciplines use model-based links: quality, design, etc.



What is the path forward?

Jonathan Scott

In your experience, how have the most successful organizations addressed these gaps and overlaps differently than others?

Leading Practices

Connected Change

Mode 1:

- PLM change connects to MES change
- MES closes loop back to PLM change

Mode 2:

 Enterprise process manages PLM change and MES change

Issue Identification

Bonus Points: anyone can raise an issue (that is triaged into NCR, Deviation, ECR, etc.)

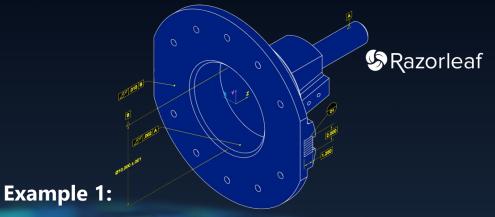
Leading Practices

BOM-Centric Viewing

 Visualization of MBOM, EBOM, xBOM by connecting 3D components with various product structures

Bonus Points:

- Access to PMI on models (MBD)
- Markup to enable 2-way communication
- Using markup with prior "Connected Change" topic



Leading Practices

Cross-Domain Model Linking

- Model Based Manufacturing derived from Model Based Definition
- Speeds and feeds for CNC determined by required precision to meet MBD tolerances

Example 2:

- Model Based Inspection derived from Model Based Definition
- Sampling rate, inspection protocol, etc. determined by allowable tolerance and criticality

Bonus Points:

 Internal system linkage or cross-system integration linkage to expose internal model linkages for impact awareness

MES Customers' Top Three Use Cases

1

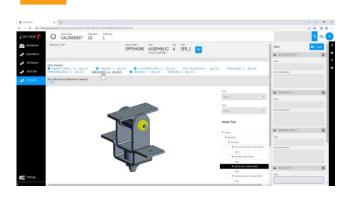
"Execution of 3D Model View"

- Data collection from a model
- Buyoff of a model process
- Adding a note to a model
- Viewing as-built model

2

"Send Enhanced CAD Data back From MES to External System For better Design"

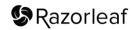
 Send inspection results back from MES to external system 3


"Report Data as Model Layers"

- Show material delays
- Show cycle time variance
- Show testing rates
- Show defect rates
- Show escapes
- Show corrective action requests
- Show efficiency data



Collaboration: Proof of Concept



Recap MES Requirements

Customer Needs

- Use the 3D product model in execution and update for as-built
- Send data back from MES testing for design enhancement
- Show actuals and production issues as layers in the model

In Development

- 3D model viewing
- Ability to see only needed components
- Highlight areas by clicking PMI
- Rotate
- · Interactively feedback to Design



Six Reasons to Bridge the Gap Now

THANK YOU

QUESTIONS?

Contact Us

Attila Labas

iBASEt

alabas@ibaset.com

Jonathan Scott

Razorleaf

jonathan.scott@Razorleaf.com

Derek Neiding

Razorleaf

derek.neiding@razorleaf.com